### Proposed Changes to Part 9 Energy Step Code Requirements





# Agenda

- 1. Welcome and Introductions
- 2. Background to BC Energy Step Code
- 3. Overview of Proposed Changes to North Shore Energy Step Code Requirements for Part 9 Buildings
- 4. Technical Skills and Training Programs for the Upper Steps
  - Mary McWilliam, BCIT
- 5. Discussion
- 6. City of North Vancouver's Proposed New Mechanical Permit





# **Climate Action Goals**

North Shore municipalities' climate target:

• Net zero by 2050



Sources of emissions in the City of North Vancouver (2020 data)





westvancouver

# **Provincial Context**

Zero-carbon new construction by 2030

Net zero energy ready new construction by 2032









# BC Energy Step Code







westvancouver

# **Province's Timeline**







westvancouver

## North Shore Step Code Adoption to Date

|                                                  | Prior to 2017<br>(Density Bonus) | December, 2017 | July, 2018 | July, 2021                          |
|--------------------------------------------------|----------------------------------|----------------|------------|-------------------------------------|
| Part 9 Residential<br>(Greater than 1200 sq.ft.) | 1% Bond +<br>EnerGuide 80        | Step 2         | Step 3     | Step 5<br>Or<br>Step 3 + Low Carbon |



# North Shore Inter-Municipal Alignment





## Proposed Changes for Part 9 Buildings: Moving to Step 4

|                                 | Current Requirement | <b>Proposed Requirement</b><br>Effective September 1, 2023 |
|---------------------------------|---------------------|------------------------------------------------------------|
| Part 9 Residential<br>Buildings | Step 5<br>Or        | Step 5<br>Or                                               |
|                                 | Step 3 + Low Carbon | Step 4 + Low Carbon                                        |

### **Benefits:**

- Improved efficiency
- Lower utility bills
- Increased comfort and resiliency





westvancouver

# Step 4 Requirements



|                               | Airtightness                      | Equipment and Systems<br>Mechanical Energy Use<br>Intensity (MEUI) | Building Enclosure<br>Thermal Energy Demand Intensity<br>(TEDI)                                            |
|-------------------------------|-----------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Step 4                        | ≤ 1.5 ACH <sub>50</sub>           | MEUI: 45 kWh/(m <sup>2</sup> year)                                 | TEDI: ≤ 20 kWh/(m²year)<br>Or<br>Adjusted TEDI: 28 kWh/(m²year)<br>Or<br>20% better than reference house   |
| Step 3                        | ≤ 2.5 ACH <sub>50</sub>           | MEUI: 55 kWh/(m²year)                                              | (TEDI): ≤ 30 kWh/(m²year)<br>Or<br>Adjusted TEDI: 38 kWh/(m²year)<br>Or<br>10% better than reference house |
| city<br>of north<br>vancouver | DISTRICT OF<br>NORTH<br>VANCOUVER | westvancouver                                                      | 10                                                                                                         |

Technical Skills and Training Programs for the Upper Steps

Mary McWilliam, BCIT







### **Zero Energy/Emissions Buildings Learning Centre**

School of Construction and the Environment



April 20, 2023 North Shore Energy Step Code Consultation



## Topics

- About BCIT's ZEB Learning Centre
- Energy Step Code 3 to 4 What does this mean?
- Knowledge and skills needed for Net Zero Energy-ready construction
- Courses and credentials

### **ZEB Learning Centre**

## Established to support industry transition to Net Zero (since 2016)

- Public and private training
- Industry events & workshops
- Support to other BCIT programs







### **Our Instructor Team**

#### Industry expertise from a wide variety of roles in Part 3 & Part 9 design & construction





2021 CaGBC Inspired Educator of the year

2022 VRCA Educational Leadership Award

BCIT

### **Knowledge and Skills Needed**

- Design features that affect compliance with performance metrics
- Building science issues & solutions in NZE-ready buildings
- Design and construction practices that reduce risk and provide value
  - Integrated design practices
  - Site supervision practices and responsibilities
  - Trades training
- Hands-on practice and solutions for detailing new assemblies and realizing Passive or Step 5 airtightness levels

### **Step 3 to Step 4 - What is Changing?**

### The Metrics (Part 9 buildings)







Envelope

Equipment & Systems

ACH50 Air Changes per House @ 50 Pascals

TEDI Thermal Energy Demand Intensity (kWh/m<sup>2</sup> yr) MEUI Mechanical Energy Use Intensity (kWh/m<sup>2</sup> yr)

### 9.36.6 Energy Step Code Step 3 vs. 4

### Airtightness

Note: May 1<sup>st</sup> BCBC code update - new additional NLR and NLA airtightness testing metrics – allows leniency for smaller homes

|         | Forming Part of Sentence 9.36.7.4.(1) |                             |                                                       |                           |  |  |  |  |
|---------|---------------------------------------|-----------------------------|-------------------------------------------------------|---------------------------|--|--|--|--|
|         |                                       |                             | Airtightness Metrics                                  |                           |  |  |  |  |
|         | Airtightness Levels                   | ACH <sub>50</sub>           | <u>NLA<sub>10</sub>, cm<sup>2</sup>/m<sup>2</sup></u> | NLR50, L/sxm <sup>2</sup> |  |  |  |  |
|         |                                       | Maximum Airtightness Values |                                                       |                           |  |  |  |  |
| STEP 3  | <u>AL-1</u>                           | <u>2.5</u>                  | <u>1.20</u>                                           | <u>0.89</u>               |  |  |  |  |
|         | <u>AL-3</u>                           | <u>1.5</u>                  | <u>0.72</u>                                           | <u>0.53</u>               |  |  |  |  |
| STEP 5* | <u>AL-4</u>                           | <u>1.0</u>                  | <u>0.48</u>                                           | <u>0.35</u>               |  |  |  |  |
| I       | Passive House Standard                | ≤ 0.6                       |                                                       |                           |  |  |  |  |

Table 9.36.7.4.

Airtightness Levels

. . . .



## **Airtightness - What is Possible?**

Even small houses can achieve exceptional airtightness

| Name                                                | Location           | TFA                   | Stories         | ACH@50 Pa |
|-----------------------------------------------------|--------------------|-----------------------|-----------------|-----------|
| West Bay<br>House                                   | West<br>Vancouver  | 295 m2<br>(3176 sqft) | 3               | 0.4       |
| 3612 Point<br>Grey                                  | Vancouver          | 148 m2<br>(1597 sqft) | 2               | 0.19      |
| North<br>Vancouver<br>Passive House<br>- Moodyville | North<br>Vancouver | 270 m2<br>(3300 sqft) | 2 +<br>basement | 0.29      |
|                                                     |                    |                       |                 |           |

### Airtightness 2.5 ACH to 1.5 ACH

### **Trends**

- Improved architectural designs
- Simplification of AB details
- Shift towards more resilient AB solutions



= 21, Swing Door

BCIT

## Airtightness 2.5 ACH to 1.5 ACH

### **Trends**

- Increased use of higher performance AB materials, accessories, and airtight components
- Diligent site supervision with AB oversight
- Enhanced coordination of work and trades work interfaces
- Crew and sub-trade training



### 9.36.6 Energy Step Code Step 3 vs. 4

### **Thermal Energy Demand Intensity (TEDI)**

Envelope

Table 9.36.6.3.-A Requirements for Buildings Located Where the Degree-Days Below 18°C Value is less than 3000<sup>(1)</sup> Forming Part of Sentence 9.36.6.3 (1)

|         | Step | Airtightness <sup>(2)</sup> | Performance Requirement of <i>Building</i> Equipment and<br>Systems                    | Performance Requirement of Building Envelope                                                                                                                                        |  |  |  |
|---------|------|-----------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| STEP 3  | 3    | <u>AL-1</u>                 | The applicable mechanical energy use intensity requirements in Table 9.36.6.3 <u>H</u> | Thermal energy demand intensity ≤ 30 kWh/(m <sup>2</sup> •year), <u>or</u><br>thermal energy demand intensity not exceeding the value<br>calculated in accordance with Sentence (4) |  |  |  |
| STEP 4* | 4    | <u>AL-3</u>                 | The applicable mechanical energy use intensity requirements in Table 9.36.6.3 <u>H</u> | Thermal energy demand intensity ≤ 20 kWh/(m²•year), <u>or</u><br>thermal energy demand intensity not exceeding the value<br>calculated in accordance with Sentence (4)              |  |  |  |
| STEP 5* | 5    | <u>AL-4</u>                 | The applicable mechanical energy use intensity requirements in Table 9.36.6.3 <u>H</u> | Thermal energy demand intensity ≤ 15 kWh/(m <sup>2</sup> •year), <u>or</u><br>thermal energy demand intensity not exceeding the value<br>calculated in accordance with Sentence (4) |  |  |  |

Notes to Table 9.36.6.3.-A:

<sup>(1)</sup> See Sentence 1.1.3.1.(1) and Table C-2 in Appendix C.

<sup>(2)</sup> See Table 9 36 7 4

Passive House Standard

≤ 15 kWh/m2 yr

## **Most Common Solutions to Reduce TEDI**

#### WHAT ARE THE MOST COMMON ENERGY SAVING MEASURES (ESMS)?

#### **Building envelope:**

 The most common ESMs used were better air tightness (90%), improved insulation (72%), reduced thermal bridging (64%), and use of high-performance windows and doors (61%).





Used better air tightness 72% 64%

Used

improved

insulation

Used reduced thermal bridging



61%

Used high-performance windows and doors



Source: BC Energy Step Code Market Response Study (BC Housing 2020)

### Lowest Cost Solutions to Reduce TEDI

#### WHICH ENERGY SAVING MEASURES IMPACT COMPONENT COSTS THE LEAST?

#### **Building envelope:**

 75% or more reported either a decrease or no change in component cost when optimizing window location (86%), simplifying the building form (80%), less window area (80%), and improving the building orientation (75%).

80%

window

Less

area



86%

Optimizing window location 80% Simplifying

building form



75<sup>%</sup>

building orientation



Source: BC Energy Step Code Market Response Study (BC Housing 2020)

## TEDI ≤30 to ≤20 kWh/m2 yr

### **Trends**

- Simplified architectural designs
- Improved airtightness
- Improved thermal performance of windows and doors
- More insulation
- Trades training





## TEDI ≤30 to ≤20 kWh/m2 yr



### Considerations

- Challenging for buildings with complex form:
  - Need enhanced enclosure performance
  - Expect problems with TEDI pathway

#### 3,800 ft<sup>2</sup> Home, CZ4 – Achieving TEDI

| STEP 3                                                              | STEP 4                                                      | STEP 5                                                                   |  |  |
|---------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|--|--|
| Complex form, slightly<br>above Code minimum<br>thermal performance | minimal improvement<br>of assemblies thermal<br>performance | enhancement of<br>assembly performance<br>– inline with VBBL<br>minimums |  |  |
| TEDI ≤ <b>30</b><br>42 kWh/m2 yr - FAIL                             | TEDI ≤20<br>38 kWh/m2 yr - FAIL                             | TEDI ≤ <b>15</b><br>24 kWh/m2 yr - FAIL                                  |  |  |
| Envelope 10% Better –<br>16%- PASS                                  | Envelope 20% Better –<br>24%- PASS                          | Envelope 50% Better –<br>51%- PASS                                       |  |  |
| ACH = 2.5                                                           | ACH = 1.5                                                   | ACH = 1.0                                                                |  |  |

## 9.36.6 Energy Step Code Step 3 vs. 4

### **Mechanical Energy Use Intensity (MEUI)**

Note: May 1st BCBC code update - new minimum efficiency requirements for HVAC equipment (9.36.3.10) and service water heating equipment (9.36.4.2)

Table 9.36.6.3.-H Mechanical Energy Use Intensity Requirements Forming Part of Sentence 9.36.6.3.(1)

Floor Area of Conditioned Space (m<sup>2</sup>)

|                                          |                                | by Step |      |          |           |                |                 |           |    |
|------------------------------------------|--------------------------------|---------|------|----------|-----------|----------------|-----------------|-----------|----|
| Building Location <sup>(1)</sup> , in    | Conditioned Space Served by    |         | ≤ 50 | 51 to 75 | 76 to 120 | 121 to 165     | 166 to 210      | > 210     |    |
| Celsius Degree-Days Space-Cooling Equipm |                                | ent     |      |          | Mechanic  | cal Energy Use | Intensity, kWh/ | (m²•year) |    |
|                                          |                                |         | 2    |          |           | Rese           | erved           |           |    |
| Less than 3000                           | Not more than 50% STEP<br>STEP | з 3     | 120  | 100      | 75        | 63             | 53              | 50        |    |
|                                          |                                | 4* 4    | 90   | 80       | 60        | 48             | 40              | 40        |    |
|                                          |                                | 5* 5    | 65   | 55       | 40        | 30             | 25              | 25        |    |
|                                          |                                |         | 2    |          |           | Rese           | erved           |           |    |
|                                          | More than 50%                  | STEP    | з 3  | 155      | 128       | 93             | 73              | 60        | 55 |
|                                          |                                | 4* 4    | 125  | 108      | 78        | 58             | 48              | 45        |    |
|                                          |                                | STEP    | 5* 5 | 100      | 83        | 58             | 40              | 33        | 30 |



**Equipment & Systems** 



### MEUI ≤55 to ≤45 kWh/m2 yr

### Considerations

- With ASHP MEUI requirements are not expected to be challenging
- DHW loads become more significant
  - system efficiency

May 1<sup>st</sup> BCBC code update changes how DHW loads are calculated per dwelling unit (9.36.5.8)

- Value of good HVAC design and rightsizing of equipment
- Focus on quality of HVAC installation

### Comparison of 2 Homes, STEP 4 compliance



Complex form, slightly above Code minimum assemblies performance



Simplified form, enhanced assemblies performance

## Most Common Solutions to Reduce MEUI

WHAT ARE THE MOST COMMON ENERGY SAVING MEASURES (ESMS)?



#### HRVs/ERVs **Mechanical System:** 73% Heat pumps for heating/cooling 72% The most common ESMs used were Heat Recovery Ventilators (HRVs) / Energy Recovery Ventilators (ERVs) (73%) and heat High efficiency appliances 58% pumps for heating/cooling (72%). Right-sizing mechanical systems 52% On-demand/tankless hot water heating 49% Better mechanical control systems 46% Heat pumps for domestic hot water heating 22% Individual unit metering 15% Wastewater heat recovery 10% Used HRVs/ERVs Used heat pumps None of the above 🔳 3%

Source: BC Energy Step Code Market Response Study (BC Housing 2020)

## Lowest Cost Solutions to Reduce MEUI

#### WHICH ENERGY SAVING MEASURES IMPACT COMPONENT COSTS THE LEAST?

#### Mechanical System:

 Half reported either a decrease or no change in component cost when right-sizing the mechanical system (52%).





Source: BC Energy Step Code Market Response Study (BC Housing 2020)



## Preparing for Transition to Energy Step Code Steps 4 and 5 and Low Carbon Energy Step Code

### ENERGY STEPCODE BUILDING BEYOND THE STANDARD



## **BCIT ZEB Learning Topics**

- Passive House, Energy and Zero Carbon Step Code
- Airtightness and Low-TEDI Assemblies
- Mechanical Systems Net Zero Part 9
- Net Zero & Passive House Site Supervision
- Electrical Systems Net Zero Part 9
- Embodied Carbon and Whole Building LCA





### **Hands-on Learning**



- Library of mock-ups for demonstration and investigation
- Mock-up construction
- Testing of student work







## **Online Learning**

- Live Filmed
- Library of How-to Videos





BCIT

## **Courses by Topic**

- **Fundamentals** of Energy Step Code and Passive House Standard
  - XZEB 1001 Fundamentals of Zero Energy/Emissions and Passive House Buildings
- Airtightness and Low-TEDI Enclosures of Zero Energy/Emissions and Passive House Buildings
  - XZEB 1120 Airtightness and Low-TEDI Enclosures for Builders / Trades / Designers
  - XZEB 1130 Airtightness and Low-TEDI Enclosures hands-on Lab for Builders / Trades / Designers
- **Mechanical and Electrical Essentials** for Zero Energy/Emissions and Passive House Buildings
  - **XZEB 1140 Introduction to Residential Mechanical Systems** for Builders / Designers
  - XZEB 1146 Mechanical and Electrical Essentials for Site Supervisors
  - XZEB 1150 Intro. to Residential Integrated Solar Photovoltaic Systems for Builders / Designers
  - XZEB 1143 Residential Air Source Heat Pump Installation Skills for Contractors
- **Supervision** of Zero Energy/Emissions and Passive House Construction
  - XZEB 1171 Site Supervision of Zero Energy/Emissions and Passive House Construction
  - XZEB 1173 Applied Project for Site Supervision of Zero Energy/Emissions and Passive House Construction









**Eligible for Continued Professional Development Credits** 

Mandatory ESC Training

Mandatory ESC Training

Modules 3.4.5.7.8

Mandatory ESC Training

Modules 2.6.8

## Certifications

| BCIT<br>Microcredentials | BCIT<br>Supervising Net-Ze<br>Passive Hous<br>Construction | ro and<br>e |         |
|--------------------------|------------------------------------------------------------|-------------|---------|
| Microcredential          |                                                            | Courses     | Tuition |
| Essentials of Net-Zer    | o and                                                      | <b>4</b>    | \$1520  |
| Passive House Const      | truction                                                   | (72 hrs)    |         |
| Supervising Net-Zero     | and                                                        | 5           | \$2020  |
| Passive House Const      | truction                                                   | (96 hrs)    |         |
| Whole-Building Life C    | Sycle                                                      | <b>4</b>    | \$1890  |
| Assessment Professi      | onal                                                       | (90 hrs)    |         |



### Plus, earn designation as:

- Certified Passive House Tradesperson
- Certified Passive House Site Supervisor

## **Learning Format**

### Online

- Live interaction with instructors
- Front seat view of hands-on work
- Review of construction drawings and inspection of mockups

### Hands-on

- Practice skills and test work in lab
- Applied work projects

### Independent

- Library of on-demand technical videos
- Job aids and checklists for reference





### **Net Zero and Passive House Continued Learning**



### **Open Ed. Resources**



### **Programs & Courses**

www.bcit.ca/zeb

## Considering Codes, Standards, and Industry Guides

**Building Codes** are not "leading" documents, they react to research and experience



# **Guides** present more recent research and better practices

- NRCan's LEEP Guides
- BC Housing's Canadian Codes previously addressed air leakage control for durability and moisture control, not energy conservation





## Thank you

#### Mary McWilliam

ZEB Learning Centre 604-202-9256 mmcwilliam3@bcit.ca



## Transition to Discussion Time







## Municipal Staff Available to Answer Questions



Tim Ryce Chief Building Official

Mike Friesen Manager, Environmental Sustainability

Larisa Lensink Environmental Sustainability Planner



**Brett Dwyer** Assistant General Manager, Regulatory Review and Compliance

**Caroline Jackson** Director, Climate Action, Natural Systems and Biodiversity

Adam Wright Sustainability Planner



**Colin Coulter** Plans Examiner, Building Department

Heather Keith Senior Manager, Climate Action and Environment







# Discussion

- 1. What are the main challenges in moving from Step 3 to Step 4 requirements?
- 2. What additional training or resources would be helpful for you to have success at Step 4?





